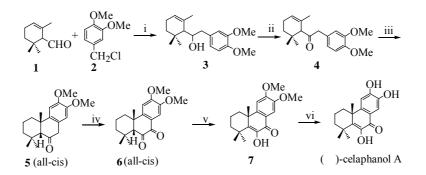
Total Synthesis of (±)-Celaphanol A

Ping Yan BIE, Cheng Lu ZHANG, Xuan Jia PENG, Xin Fu PAN*


Department of Chemistry, National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

Abstract: The first total synthesis of (\pm)-Celaphanol A was accomplished starting from α -cyclocitral and 3,4-dimethoxy benzyl chloride *via* a six-step process, in which the intramolecular cyclization of ketone 4 with BF₃·Et₂O afforded an all-*cis* isomer intermediate for synthesis of aromatic tricyclic diterpenes.

Keywords: Total synthesis, (±)-celaphanol A, diterpene.

Celaphanol A was a diterpene isolated from the stems of *Celastrus stephanotifolius*¹, which have been the subject of continued and growing interest, due to the range of biological activities shown by many members of this family². Some have been used in traditional medicine³ or as a stimulant⁴ from ancient times. In order to further study the relationship between the structure and biological activity of the diterpene compound and as an extension of diterpenoid synthesis in our laboratory^{5, 6}, the first synthesis of the title compound was achieved through the AC-ABC ring construction synthetic strategy.

Scheme 1

Reagents and Conditions: (i) Mg, Et₂O, reflux, 2 h, 79%; (ii) PCC, CH₂Cl₂, r.t., 2.5 h, 85%; (iii) BF₃·Et₂O, CH₂Cl₂, r.t., 93%; (iv) CrO₃/HOAc, r.t., 0.5 h, 90%; (v) t-BuOK/t-BuOH, r.t., 2 h, 80%; (vi) BBr₃, CH₂Cl₂, 0°C, 0.5 h, 85%.

^{*}E-mail: panxf@lzu.edu.cn

As shown in **Scheme 1**, α -cyclocitral **1** and 3,4-dimethoxy benzyl chloride **2** were used as the starting materials. The latter was prepared from readily available vanillin in three steps. The condensation of **1** and the Grignard reagent of **2** in dry diethyl ether under argon afforded the desired alcohol **3**, which was then oxidized with pyridinium chlorochromate in CH₂Cl₂ to yield ketone **4** in excellent yield. The intramolecular cyclization of **4** with BF₃·Et₂O in CH₂Cl₂ at room temperature afforded all-*cis* isomer **5** in 93% yield and no *trans*-isomer was detected from its ¹H NMR spectrum.

The *cis*-configuration of A/B ring junction in **5** was characterized specifically by the upfield signal of the $C_{4\alpha}$ methyl group at 0.37ppm. According to the literature⁷, when A/B ring is in *cis* junction, the $C_{4\alpha}$ methyl group remains within the sphere of magnetic influence of aromatic ring C, the chemical shift of $C_{4\alpha}$ methyl group appears at about 0.40 ppm. When A/B ring is in *trans* junction, the $C_{4\alpha}$ methyl group is deshielded by aromatic ring C, the chemical shift of $C_{4\alpha}$ methyl group is deshielded by aromatic ring C, the chemical shift of $C_{4\alpha}$ methyl group will appear at about 1.00 ppm.

Oxidation of compound **5** with $CrO_3/HOAc$ afforded diketone **6** in good yield. Treatment of **6** with *t*-BuOK/*t*-BuOH afforded the compound **7**⁸ in 80% yield. Finally, demethylation of **7** with BBr₃ in CH₂Cl₂ furnished the target molecule (±)-Celaphanol A⁹.

In conclusion, in the present work, a simple convergent synthetic route has been developed for the newly discovered diterpenoid.

Acknowledgments

We are grateful to the National Natural Science Foundation of China (No. 20172023) for financial support.

References and Notes

- 1. B. Chen, H. Q. Duan, Y. Takaishi, *Phytochemistry*, **1999**, *51*, 683.
- 2. R. Bruning, H. Wagner, *Phytochemistry*, 1978, 17, 1821.
- 3. Y. Shizuri, H. Wada, K. Sugiura, K. Yamada, Y. Hirata, Tetrahedron, 1973, 29, 1173.
- 4. A. Geutaharn, A. D. Krikorian, Economic Botany, 1973, 27, 353.
- 5. X. C. Wang, X. F. Pan, Tetrahedron, 1996, 52, 10659.
- 6. Y. H. Gan, A. P. Li, X. F. Pan, Tetrahedron Asymmetry, 2000, 11, 781.
- 7. Y. Kondo, T. Ikenoue, T. Takemoto, Chem. Pharm. Bull., 1963, 11, 678.
- Compound 7: white needles, mp: 119-121°C. IR: v (KBr) 1596, 1622, 3339cm⁻¹. ¹H NMR (200MHz, CDCl₃): δ ppm 1.43 (s, 3H), 1.44 (s, 3H), 1.52 (s, 3H), 1.75~2.35 (m, 6H), 3.94 (s, 3H), 3.96 (s, 3H), 6.90 (s, 1H), 7.12 (s, 1H), 7.56 (s, 1H). ¹³C NMR (100MHz, CDCl₃): 17.5, 27.6, 28.0, 33.6, 34.7, 35.9, 37.6, 40.5, 56.1, 107.2, 107.3, 120.7, 141.3, 143.7, 148.0, 149.8, 153.6, 179.4. MS-EI (*m/z*): 316, 273, 247, 43. (Found: C, 72.21; H, 7.59. C₁₉H₂₄O₄ requires C, 72.13; H, 7.65%)
- (±)-Celaphanol A: red solid, mp: 186-188°C. IR: v (KBr) 1650, 1700, 3413cm⁻¹. ¹H NMR (200MHz, CD₃COCD₃): δ ppm 1.36 (m, 1H), 1.50 (s, 3H), 1.54 (s, 3H), 1.60 (s, 3H), 1.59 (m, 1H), 1.75 (m, 2H), 1.89 (m, 1H), 2.39 (m, 1H), 7.05 (s, 1H), 8.24 (s, 1H). ¹³C NMR (100MHz, CD₃COCD₃): 18.0, 27.9, 28.3, 33.9, 35.1, 36.3, 38.3, 40.8, 111.8, 112.4, 120.8, 140.6, 143.4, 144.9, 149.8, 151.8, 179.9. MS-EI (*m*/*z*): 288, 273, 245, 232, 218, 190. (Found: C, 70.92, H, 6.93. C₁₇H₂₀O₄ requires C, 70.81; H, 6.99%). The above data were consistent with the literature¹.

Received 17 December, 2001